Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Immunol ; 14: 1110874, 2023.
Article in English | MEDLINE | ID: covidwho-2298552

ABSTRACT

Introduction: Tocilizumab, a humanized anti-interleukin-6 receptor (IL-6R) antibody, is recommended for the treatment of severe to critical coronavirus diseases 2019 (COVID-19). However, there were conflicting results on the efficacy of tocilizumab. Therefore, we hypothesized that the differences in tocilizumab efficacy may stem from the different immune responses of critical COVID-19 patients. In this study, we described two groups of immunologically distinct COVID-19 patients, based on their IL-6 response. Methods: We prospectively enrolled critical COVID-19 patients, requiring oxygen support with a high flow nasal cannula or a mechanical ventilator, and analyzed their serial samples. An enzyme-linked immunosorbent assay and flow cytometry were used to evaluate the cytokine kinetics and cellular immune responses, respectively. Results: A total of nine patients with critical COVID-19 were included. The high (n = 5) and low IL-6 (n = 4) groups were distinguished by their peak serum IL-6 levels, using 400 pg/mL as the cut-off value. Although the difference of flow cytometric data did not reach the level of statistical significance, the levels of pro-inflammatory cytokines and the frequencies of intermediate monocytes (CD14+CD16+), IFN-γ+ CD4+ or CD8+ T cells, and HLA-DR+PD-1+ CD4+ T cells were higher in the high IL-6 group than in the low IL-6 group. Conclusion: There were distinctive two groups of critical COVID-19 according to serum IL-6 levels having different degrees of cytokinemia and T-cell responses. Our results indicate that the use of immune modulators should be more tailored in patients with critical COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , Interleukin-6 , Cytokines , HLA-DR Antigens
2.
Front Immunol ; 14: 1106664, 2023.
Article in English | MEDLINE | ID: covidwho-2298551

ABSTRACT

Background: Little is known about the immune determinants for severe coronavirus disease 2019 (COVID-19) in individuals vaccinated against severe acute respiratory syndrome coronavirus 2. We therefore attempted to identify differences in humoral and cellular immune responses between patients with non-severe and severe breakthrough COVID-19. Methods: We prospectively enrolled hospitalized patients with breakthrough COVID-19 (severe and non-severe groups) and uninfected individuals who were vaccinated at a similar time (control group). Severe cases were defined as those who required oxygen therapy while hospitalized. Enzyme-linked immunosorbent assays and flow cytometry were used to evaluate humoral and cellular immune responses, respectively. Results: Anti-S1 IgG titers were significantly lower in the severe group than in the non-severe group within 1 week of symptom onset and higher in the non-severe group than in the control group. Compared with the control group, the cellular immune response tended to be diminished in breakthrough cases, particularly in the severe group. In multivariate analysis, advanced age and low anti-S1 IgG titer were associated with severe breakthrough COVID-19. Conclusions: Severe breakthrough COVID-19 might be attributed by low humoral and cellular immune responses early after infection. In the vaccinated population, delayed humoral and cellular immune responses may contribute to severe breakthrough COVID-19.


Subject(s)
COVID-19 , Complementary Therapies , Humans , Breakthrough Infections , SARS-CoV-2 , Immunoglobulin G
4.
J Med Virol ; 95(2): e28558, 2023 02.
Article in English | MEDLINE | ID: covidwho-2231633

ABSTRACT

The fourth vaccination dose confers additional protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in individuals with no prior coronavirus disease-19 (COVID-19). However, its immunological benefit against currently circulating BA.4/5 is unclear in individuals who have received a booster shot and been infected with Omicron variant BA.1/2. We analyzed immune responses in whom had been boosted once and did not have COVID-19 (n = 16), boosted once and had COVID-19 when BA.1/2 was dominant in Korea (Hybrid-6M group, n = 27), and boosted twice and did not have COVID-19 (Vx4 group, n = 15). Antibody binding activities against RBDo BA.1 and RBDo BA.4/5 , antigen-specific memory CD4+ and CD8+ T-cell responses against BA.4/5, and B-cell responses against SARS-CoV-2 wild-type did not differ statistically between the Hybrid-6M and Vx4 groups. The humoral and cellular immune responses of the Hybrid-6M group against BA.4/5 were comparable to those of the Vx4 group. Individuals who had been boosted and had an Omicron infection in early 2022 may not have high priority for an additional vaccination.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Immunity, Cellular , B-Lymphocytes , Antibodies, Neutralizing , Antibodies, Viral
5.
BMC Med ; 20(1): 181, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1892212

ABSTRACT

BACKGROUND: Practical guidance is needed regarding the vaccination of coronavirus disease 2019 (COVID-19) convalescent individuals in resource-limited countries. It includes the number of vaccine doses that should be given to unvaccinated patients who experienced COVID-19 early in the pandemic. METHODS: We recruited COVID-19 convalescent individuals who received one or two doses of an mRNA vaccine within 6 or around 18 months after a diagnosis of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. Their samples were assessed for IgG-binding or neutralizing activity and cell-mediated immune responses against SARS-CoV-2 wild-type and variants of concern. RESULTS: A total of 43 COVID-19 convalescent individuals were analyzed in the present study. The results showed that humoral and cellular immune responses against SARS-CoV-2 wild-type and variants of concern, including the Omicron variant, were comparable among patients vaccinated within 6 versus around 18 months. A second dose of vaccine did not significantly increase immune responses. CONCLUSION: One dose of mRNA vaccine should be considered sufficient to elicit a broad immune response even around 18 months after a COVID-19 diagnosis.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , Humans , Immunity, Cellular , RNA, Messenger/genetics , SARS-CoV-2/genetics , Vaccination , Vaccines, Synthetic , mRNA Vaccines
8.
Front Immunol ; 13: 830433, 2022.
Article in English | MEDLINE | ID: covidwho-1785337

ABSTRACT

Background: Despite the fact of ongoing worldwide vaccination programs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding longevity, breadth, and type of immune response to coronavirus disease-19 (COVID-19) is still important to optimize the vaccination strategy and estimate the risk of reinfection. Therefore, we performed thorough immunological assessments 1 year post-COVID-19 with different severity. Methods: We analyzed peripheral blood mononuclear cells and plasma samples at 1 year post-COVID-19 in patients who experienced asymptomatic, mild, and severe illness to assess titers of various isotypes of antibodies (Abs) against SARS-CoV-2 antigens, phagocytic capability, and memory B- and T-cell responses. Findings: A total of 24 patients (7, 9, and 8 asymptomatic, mild, and severe patients, respectively) and eight healthy volunteers were included in this study. We firstly showed that disease severity is correlated with parameters of immune responses at 1 year post-COVID-19 that play an important role in protecting against reinfection with SARS-CoV-2, namely, the phagocytic capacity of Abs and memory B-cell responses. Interpretation: Various immune responses at 1 year post-COVID-19, particularly the phagocytic capacity and memory B-cell responses, were dependent on the severity of the prior COVID-19. Our data could provide a clue for a tailored vaccination strategy after natural infection according to the severity of COVID-19.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity , Leukocytes, Mononuclear , Reinfection , SARS-CoV-2 , Severity of Illness Index
9.
Front Immunol ; 12: 712274, 2021.
Article in English | MEDLINE | ID: covidwho-1405409

ABSTRACT

At present, concerns that the recent global emergence of SARS-CoV-2 variants could compromise the current vaccines have been raised, highlighting the urgent demand for new vaccines capable of eliciting T cell-mediated immune responses, as well as B cell-mediated neutralizing antibody production. In this study, we developed a novel recombinant Mycobacterium paragordonae expressing the SARS-CoV-2 receptor-binding domain (RBD) (rMpg-RBD-7) that is capable of eliciting RBD-specific immune responses in vaccinated mice. The potential use of rMpg-RBD-7 as a vaccine for SARS-CoV-2 infections was evaluated in in vivo using mouse models of two different modules, one for single-dose vaccination and the other for two-dose vaccination. In a single-dose vaccination model, we found that rMpg-RBD-7 versus a heat-killed strain could exert an enhanced cell-mediated immune (CMI) response, as well as a humoral immune response capable of neutralizing the RBD and ACE2 interaction. In a two-dose vaccination model, rMpg-RBD-7 in a two-dose vaccination could also exert a stronger CMI and humoral immune response to neutralize SARS-CoV-2 infections in pseudoviral or live virus infection systems, compared to single dose vaccinations of rMpg-RBD or two-dose RBD protein immunization. In conclusion, our data showed that rMpg-RBD-7 can lead to an enhanced CMI response and humoral immune responses in mice vaccinated with both single- or two-dose vaccination, highlighting its feasibility as a novel vaccine candidate for SARS-CoV-2. To the best of our knowledge, this study is the first in which mycobacteria is used as a delivery system for a SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Mycobacterium , Spike Glycoprotein, Coronavirus/immunology , Animals , COVID-19 Vaccines/pharmacology , Female , Mice , Mice, Inbred BALB C , Protein Domains , SARS-CoV-2
10.
J Infect Dis ; 224(1): 39-48, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1294730

ABSTRACT

BACKGROUND: Understanding the memory T-cell response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for assessing the longevity of protective immunity after SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination. However, the longitudinal memory T-cell response up to 8 months post-symptom onset (PSO) according to the severity of illness is unknown. METHODS: We analyzed peripheral blood mononuclear cells (PBMCs) from healthy volunteers or patients with COVID-19 who experienced asymptomatic, mild, or severe illness at 2, 5, and 8 months PSO. SARS-CoV-2 spike, nucleocapsid, and membrane protein-stimulated PBMCs were subjected to flow cytometry analysis. RESULTS: A total of 24 patients (7 asymptomatic, 9 with mild disease, and 8 with severe disease) and 6 healthy volunteers were analyzed. SARS-CoV-2-specific OX40+CD137+CD4+ T cells and CD69+CD137+CD8+ T cells persisted at 8 months PSO. Also, antigen-specific cytokine-producing or polyfunctional CD4+ T cells were maintained for up to 8 months PSO. Memory CD4+ T-cell responses tended to be greater in patients who had severe illness than in those with mild or asymptomatic disease. CONCLUSIONS: Memory response to SARS-CoV-2, based on the frequency and functionality, persists for 8 months PSO. Further investigations involving its longevity and protective effect from reinfection are warranted.


Subject(s)
COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Immunologic Memory , SARS-CoV-2/immunology , T-Lymphocyte Subsets/immunology , Adult , Aged , Antigens, Viral , Biomarkers , COVID-19/diagnosis , COVID-19/epidemiology , Case-Control Studies , Cytokines/metabolism , Disease Management , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunity, Cellular , Immunophenotyping , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Longitudinal Studies , Male , Middle Aged , Severity of Illness Index , Symptom Assessment , T-Lymphocyte Subsets/metabolism , Time Factors
11.
Int J Infect Dis ; 97: 313-321, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-436630

ABSTRACT

OBJECTIVES: We hypothesized that immune response may contribute to progression of coronavirus disease-19 (COVID-19) at the second week of illness. Therefore, we compared cell-mediated immune (CMI) responses between severe and mild COVID-19 cases. METHODS: We examined peripheral blood mononuclear cells of laboratory-confirmed COVID-19 patients from their first and third weeks of illness. Severe pneumonia was defined as an oxygen saturation ≤93% at room air. Expressions of molecules related to T-cell activation and functions were analyzed by flow cytometry. RESULTS: The population dynamics of T cells at the first week were not different between the two groups. However, total numbers of CD4+ and CD8+ T cells tended to be lower in the severe group at the third week of illness. Expressions of Ki-67, PD-1, perforin, and granzyme B in CD4+ or CD8+ T cells were significantly higher in the severe group than in the mild group at the third week. In contrast to the mild group, the levels of their expression did not decrease in the severe group. CONCLUSIONS: Severe COVID-19 had a higher degree of proliferation, activation, and cytotoxicity of T-cells at the late phase of illness without cytotoxic T-cell contraction, which might contribute to the development of severe COVID-19.


Subject(s)
Coronavirus Infections/immunology , Immunity, Cellular , Lymphocyte Activation , Pneumonia, Viral/immunology , T-Lymphocytes, Cytotoxic/immunology , Adult , Aged , Aged, 80 and over , Betacoronavirus , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Coronavirus Infections/physiopathology , Cytokines/immunology , Female , Granzymes , Humans , Ki-67 Antigen , Leukocytes, Mononuclear/immunology , Lymphocyte Count , Male , Middle Aged , Pandemics , Perforin , Pneumonia, Viral/physiopathology , Programmed Cell Death 1 Receptor , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL